
Dual-Robot Score Multi-Objective Optimization using a Two-Part Knapsack Algorithm with
Mutual Exclusivity through Dynamic Programming in Python
Ruotong Gao
The Webb Schools
Tonygao@webb.org

Dual-Robot Multi-Objective Score Optimization using a Two-Part
Knapsack Algorithm with Mutual Exclusivity through Dynamic
Programming in Python

Abstract:
Time and score are the two imperative metrics that Botball is played around. Optimizing the
maximum number of points within the allotted timeframe is crucial to a team’s performance
during Botball competitions and is the determining factor of success within the competition. A
team’s choice in the tasks they decide to pursue ultimately defines their methodology and robot
design. Teams must carefully select the optimal tasks that each robot will perform, considering
the score, difficulty, and time within each task. This results in balancing high-value tasks, which
may be time-consuming,e against lower-value tasks, which can be quickly completed. A
variation of the knapsack problem through multi-objective optimization and mutual exclusivity
was constructed to address this challenge for two robots in a realistic and accurate way.

The typical knapsack problem is a well-known optimization algorithm in which the objective is
to select a subset of items, to maximize the total value without exceeding a specified limit. This
paper presents a research model that involves dividing tasks between the two robots with one
larger task list that the algorithm self-arranges into two separate knapsacks within the larger
algorithm while considering mutual exclusivity constraints [1]. Mutual exclusivity implies that
both robots cannot perform specific tasks simultaneously due to physical space limitations or
task dependencies. The model applies multi-objective optimization (MOO) principles to achieve
the best overall performance, focusing on finding a balance between score and difficulty within a
set timeframe for the two robots. MOO ensures that the selection of tasks accounts for both score
and difficulty so that if two solutions have a similar score with a tolerance of 10, the one with the
lower difficulty is preferred [2].

By leveraging this dual-robot optimization strategy, teams can effectively plan and execute their
task allocations, ensuring both robots focus on the most valuable tasks in the available time. By
applying a two-part knapsack algorithm with mutual exclusivity constraints and multi-objective
optimization, teams can efficiently plan and execute an optimal direction for their game. This
research highlights the practical application of advanced optimization techniques in a



competitive robotics setting, demonstrating their value in enhancing the decision-making process
and overall success in Botball competitions.

Introduction:

Scoring:
Botball 2024 offers a unique game set in a lunar environment. It challenges teams with various
objectives. The scoring system consists of base amounts and multipliers, as well as unique tasks
that can be accomplished to multiply the existing score within a particular objective area. Each
area has a theoretical maximum score, where teams can allocate the maximum requirements for
scoring and any additional multipliers. The maximal score is the primary metric the algorithm
was built on. The scoring sheet is as follows:

(Table 1) Scoresheet for the 2024 Botball GCER game [3]
/
Knapsack and MOO:
Knapsack problems are a fundamental optimization challenge where an algorithm selects items
to maximize the total value without exceeding a specific capacity. This problem typically finds
applications in computer science, resource allocation, scheduling, and finance, among many
others. There are many types of knapsack problems, but the primary focus falls into three main
types: Binary Knapsack Problem, items cannot be divided; it is either take it or leave it, and



Fractional Knapsack Problems: Items can be taken in fractions, allowing more flexibility in
selecting items to maximize value, and Bounded Knapsack Problems: Items can only be placed
in the knapsack a certain amount of times [4].

(Figure 1) Diagram for the logic of a bounded Knapsack Algorithm [5]

At its core, the knapsack problem involves selecting a subset of items from a given set, each
characterized by a weight, and a value, with the goal of maximizing the total value without
exceeding a maximum capacity. A further characterization by UT Dallas defines the variables

Variables defined by UT Dallas for the Knapsack Algorithm [6]

Thus, the algorithm can be expressed mathematically as follows:

With Xn being the nonnegative integer
decision variables, defined by Xk = the
number of type-k items that are loaded into
the knapsack. [6]

Summation equation for the Knapsack Algorithm [6]

Multi-objective optimization (MOO) involves optimizing multiple objectives
simultaneously, aiming to find a set of solutions that represent trade-offs between these
objectives. Unlike single-objective optimization, where a clear best solution exists, MOO deals

https://media.geeksforgeeks.org/wp-content/uploads/20231016145447/0-1-Knapsack-using-Branch-and-Bound3.jpg
https://personal.utdallas.edu/~scniu/OPRE-6201/documents/DP3-Knapsack.pdf
https://personal.utdallas.edu/~scniu/OPRE-6201/documents/DP3-Knapsack.pdf
https://personal.utdallas.edu/~scniu/OPRE-6201/documents/DP3-Knapsack.pdf


with multiple different variables to consider, like score and difficulty, while managing to fit
within another constraint: time. This is incredibly important for the game as the
difficulty/feasibility of tasks is also a crucial aspect of a team’s selection of objectives. For
example, Botguy tends to result in a ten-times multiplier for the particular game area he is set in.
However, Botguy tends to be heavy, oddly shaped, and placed in a hard-to-get-to location, which
raises its difficulty much more than most other tasks. When a team faces two tasks of similar
score value and varying difficulties, an algorithm must consider this and adjust based on
difficulty to make the optimal scoring more feasible/realistic.

Mutual exclusivity is also necessary within this particular game since only a set number
of pieces can provide points. These pieces can be moved to different parts of the game board to
score varying amounts of points with different objectives, such as placing poms into one area
versus sorting them and placing them within a bin. As only a set amount of pieces can be used,
some tasks are mutually exclusive with others as they each utilize the maximum amount of
pieces to be most effective in their scoring. An example from this year's game is the moon base
and lava tube area, which both utilize the blue poms.

All of these aspects were integrated through dynamic programming via Python. Dynamic
programming (DP) is a method used by algorithms to simplify complex problems by breaking
them down into smaller subproblems. This approach is beneficial in optimization problems, as it
breaks the optimization problem down into a sequence of decisions to maximize the objective
function [7]. The method used by dynamic programming involves solving each subproblem and
storing its solution to avoid the need to recompute it every time it is needed.

(Figure 2) Diagram depicting the logic for dynamic programmin[8]

Methods:

Defining Parameters:
The Botball game indirectly and directly outlines various requirements for the algorithm, such as
the timeframe, scores, and difficulties for every task. KIPR clearly outlines the score and
timeframe for the robots, though this does not account for many specifics and difficulties.
Though technically, both robots have a time of two minutes to run, typically, there is a delay

https://www.sciencedirect.com/topics/engineering/dynamic-programming#:~:text=It%20breaks%20the%20optimization%20problem,or%20maximize%20the%20objective%20function
https://www.scaler.com/topics/data-structures/dynamic-programming/


between the commencement of both robots' algorithms, either intentionally or unintentionally.
On average, teams will usually have a difference of 30 seconds between robot activation, which
sets a different timeframe for the Wombat and Create. Difficulty is assigned due to three
parameters: complexity, feasibility, and percentage of failure in the tasks. This was then outlined
along with the score and time in a larger table (Table 2) to create the list for the algorithm to run.

(Table 2) Table of the tasks, scores, amount of time, and difficulty for the robots

(Figure 3) Tasks in a list

Coding Methodology:
The methodology for the coding process is displayed below:
Objective: Select tasks to maximize the total score while minimizing the total difficulty within
two different timeframes (primary and secondary).
Constraints:



- Each task has a score, time requirement, and difficulty level.
- The primary and secondary knapsacks have distinct time capacities.
- Some tasks may be mutually exclusive.

Task Definition:
- Task name, Score, Time required, Difficulty level

Initialization:
- Utilize DP to solve the knapsack problem for both primary and secondary timeframes
- Create a DP table to store the maximum score for each capacity
- Create a corresponding difficulty table (difficulty) for the total difficulty.
- Initialize an included matrix to track the tasks in the solution for each capacity.

Task Processing:
- Iterate through all tasks for maximum score to the task's time requirement:
- Calculate the new potential score and difficulty if the task is included.
- Update the DP and difficulty tables if the new score is better or similar (within the

tolerance) to the current best score and has a lower difficulty.
Knapsack Optimization

- Use DP for both primary and secondary knapsack capacities.
- Identify and select tasks that yield the maximum score independently within the two

timeframes.
- Determine if any mutually exclusive tasks are selected within the primary knapsack and

adjust the remaining tasks for the secondary knapsack based on mutual exclusivity.
- Combine selected tasks from both primary and secondary knapsacks and calculate the

total score and difficulty for the combined tasks.

Following this structured methodology, the multi-objective optimization process can be
systematically implemented to balance maximizing scores and minimizing difficulties for the
given tasks within the specified timeframes.

Algorithm:

double_knapsack function: This is the main function that optimizes the double knapsack. It
takes the list of tasks, primary and secondary timeframes, and a score tolerance. It calls the
knapsack function twice: first for the primary knapsack and then for the secondary knapsack.

(Figure 4)

Knapsack Function:

- This function solves the knapsack problem for a given set of tasks and capacity using
dynamic programming to find the optimal combination of tasks to maximize the score
while considering the difficulty. Inside the knapsack function, dp and difficulty are



initialized as 2D arrays to store scores and difficulties, respectively, for each capacity. It
maintains two DP tables (“dp” for score and “difficulty” for difficulty) and the “included”
matrix to track selected tasks.

- The for loop iterates through each task (task_name, score, time, diff) in the list “tasks”. It
skips the task specified by exclude_task (used for secondary knapsack when tasks from
the primary are excluded). It then iterates backward through possible capacities in
variable “t” from the variable “capacity” down to “time - 1”.

(Figure 5)

- The function updates the dp table for each task and each capacity. If the task is included,
it calculates a new_score and new_difficulty. It updates dp[0][t] (score) and dp[1][t]
(difficulty) if the new solution provides a higher score or if the score is within
score_tolerance of the current best score and has a lower difficulty.

- After processing all given parameters, the function identifies the maximum score
(max_score) achievable within the given capacity (capacity). It retrieves the list of
selected tasks (selected_tasks) that contribute to this maximum score based on the
“included” matrix.



Mutual Exclusivity and Calls:

(Figure 6)

- Then, the double_knapsack function first calls knapsack to solve for the primary
knapsack (selected_tasks_primary) and checks if the task "Moon Base w/ pulled airlock"
is included in it. If true, it sets up to handle exclusivity in the secondary knapsack
solution.

- It then removes tasks already selected in the primary knapsack from tasks and calls the
knapsack again to solve for the secondary knapsack (selected_tasks_secondary) and
excludes the task (Lava Tubes) related to the mutual exclusivity if needed

- Finally, the code returns the combined tasks, scores, and difficulties

Output:

(Figure 7)



- Figure 7 demonstrates the function's output, with an optimal total score of 3000 and a
total difficulty value of 16. The selected tasks were Habitat Construction, Astronauts(1
station is unreachable by link), Solar Panel with Astronauts, Moon Base with pulled
airlock, Area with sorted poms, and Flipping the Solar Panel.

- The primary knapsack (Create Robot) performed the following tasks: Area with sorted
poms, Moon Base with pulled airlock, and the Astronauts (1 station is unreachable by
link).

- The secondary knapsack (Link Robot) was performed by flipping the solar panel, solar
panel w/astronaut, and habitat construction.

Conclusion:

This research presents a novel approach to optimize task allocation for dual-robot teams in
Botball competitions through a two-part knapsack algorithm integrated with mutual exclusivity
constraints and multi-objective optimization (MOO). Considering the interplay between score,
difficulty, and time, this methodology ensures that both robots in a team can efficiently maximize
their contributions within the limited competition timeframe.

The dual-robot optimization uses dynamic programming to systematically simplify the complex
problem of task allocation into manageable subproblems. By applying the knapsack algorithm
twice—first for the primary knapsack (Create Robot) and then for the secondary knapsack
(Wombat Robot)—the model accommodates each robot's capabilities and timeframes. Mutual
exclusivity is incorporated to prevent overlapping tasks that could lead to inefficiencies or
physical interferences.

Through this structured approach, the model successfully identifies each robot's optimal set of
tasks, balancing high-value yet time-consuming tasks with more difficulty against quicker, more
accessible, lower-value ones. The practical application of this model in the Botball competition
setting demonstrates its effectiveness, as shown by the simulation output, achieving a total score
of 3000 with a total difficulty of 16. This result highlights the value of advanced optimization
techniques in enhancing strategic decision-making and overall team performance.

In conclusion, the two-part knapsack algorithm with mutual exclusivity constraints and MOO
principles provides a robust framework for optimizing dual-robot task allocation in competitive
robotics. This approach maximizes scoring potential and ensures a balanced distribution of task
difficulty, allowing for more efficient and successful robot performances in Botball competitions.
Future work could expand on this model by further incorporating real-time adjustments and
machine learning techniques to refine task allocation strategies in dynamic competition
environments.



References:

1. Cacchiani, Valentina, et al. “Knapsack Problems — an Overview of Recent Advances.
Part I: Single Knapsack Problems.” Computers & Operations Research, Feb. 2022, p.
105692, https://doi.org/10.1016/j.cor.2021.105692.

2. K. Deb, Multi-Objective Optimization using Evolutionary Algorithms, John Wiley &
Sons, Inc., 2001

3. 2024 Botball Game Review v2.0
4. Suhas, C. “A Study of Performance Analysis on Knapsack Problem.”International

Journal of Computer Applications (0975 – 8887) National Conference on “Recent Trends
in Information Technology” (NCRTIT-2016)

5. “Implementation of 0/1 Knapsack Using Branch and Bound.” GeeksforGeeks, 29 Apr.
2016,www.geeksforgeeks.org/implementation-of-0-1-knapsack-using-branch-and-bound/.
Accessed 23 June 2024.

6. “The Knapsack Problem” UT Dallas
7. Sha, Huajing, et al. “Overview of Computational Intelligence for Building Energy

System Design.” Renewable and Sustainable Energy Reviews, vol. 108, July 2019, pp.
76–90, https://doi.org/10.1016/j.rser.2019.03.018.

8. Dixit, Ananya. “Dynamic Programming.” Scaler Topics, 20 Dec. 2021,
www.scaler.com/topics/data-structures/dynamic-programming/.

https://doi.org/10.1016/j.cor.2021.105692

